Солнечные батареи из аморфного кремния: плюсы и минусы

Помимо классических монокристаллических и поликристаллических панелей, несколько лет назад большой популярностью начали пользоваться солнечные батареи из аморфного кремния. Долгое время они практически не применялись, причиной чему был крайне низкий КПД. Однако с переходом на тонкопленочную технологию изготовления производительность A-Si значительно выросла. Сегодня их широкое использование базируется на удачном соединении низкой себестоимости.

Панели из кристаллического и аморфного кремния – главные отличия

Несмотря на использовании во всех трех типах батарей одинакового полупроводникового материала – кремния – Moni-Si, Poli-Si и A-Si имеют одно важное конструктивное отличие. Заключается оно в форме поглощающей фотоны поверхности.

  1. Moni-Si. В монокристаллических ячейках игольчатые поверхности кристаллов расположены под одним углом. По этой причине при строго вертикальном падении лучей уровень генерации таких ячеек максимален, но при малейшем отклонении угла от 90° эффективность резко падает.
  2. Poli-Si. Из-за иной технологии выращивания кристаллов их поглощающие грани размещены разнонаправлено. Это несколько снижает коэффициент поглощения солнечной энергии при прямом падении лучей, но повышает при угловом.
  3. A-Si. Солнечные батареи из аморфного кремния обладают «рыхлой» поверхностью, под электронным микроскопом напоминающей пену. Главное ее преимущество – практически неизменный показатель поглощения, независимо от углов наклона к солнцу и азимута на него. В ясную погоду это качество является негативным. Но в регионах с преобладанием пасмурных дней среднегодовая производительность A-Si имеет хорошие показатели. Несмотря на достаточно низкий (в сравнении с поли- и монокристаллом) номинальный КПД. 

Более эффективен последний тип батарей и в условиях постоянной загазованности окружающей среды, а также в местностях с частыми пылевыми бурями.

Краткая история совершенствования панелей из аморфного кремния

В качестве полупроводника этот материал впервые привлек внимание ученых только в 1980-х. Такое внимание он заслужил рядом уникальных свойств, главными из которых была простота производства и возможность создавать токопроводящие поверхности любого размера.


Поначалу аморфный кремний использовался исключительно в электронном оборудовании, и только к концу 20 века были изготовлены первые фотоэлектрические элементы на его основе. За последующие 20 лет было создано три поколения солнечных батарей A-Si, каждое из которых существенно превосходило предыдущее.

  • Первое поколение – однопереходные ячейки. Плюс – дешевое производство. Минус – срок службы около 10 лет и КПД менее 5%. 
  • Второе поколение – усовершенствованная модификация ранних моделей. Плюс – увеличение срока службы до 20 лет. Минус – все еще низкая эффективность порядка 8%. 
  • Третье поколение – принципиально новая технология. Аморфный кремний стал наноситься на подложки путем испарения с последующей конденсацией. Плюс – новые панели стали гибкими и долговечными. Минус – КПД пока так и не достиг уровня кристаллической фотовольтаики, хотя и поднялся до 14-16%.

Тем не менее, даже при такой эффективности батареи A-Si начали конкурировать с монокристаллическими и поликристаллическими аналогами. Характерен один из экспериментов, проведенный Институтом Высоких Температур (ИВТАН) в Москве. На одном из зданий было установлено два типа панелей – монокристаллических и аморфных. В условиях мегаполиса, расположенного в умеренно высоких широтах, оба типа батарей сгенерировали за год:

  • A-Si – 726 кВт*ч / 1кВт;
  • Moni-Si – 689 кВт*ч / 1кВт.

При этом номинальный КПД первых составлял всего 14,8%, а вторых – 22,9%.


Отдельно стоит выделить гибридную технологию гетероструктурных батарей, когда солнечные элементы формируются и на основе аморфного кремния, и кристаллического кремния. Такой подход позволяет повысить генерацию при экстремально высоких и низких температурах, а также в условиях низкой освещенности (в сравнении с моно/поли), а в обычных условиях - генерировать больше, чем чистый аморфный кремний. Такую технологию производства солнечных батарей использует, в том числе, и отечественная компания Хевел.

Достоинства и недостатки аморфного кремния – краткие итоги

Среди основных преимуществ таких солнечных батарей можно выделить следующие:

  1. Минимальный температурный коэффициент. Высокие температуры практически не оказывают влияния на эффективность панелей A-Si. Если у монокристаллов нагревание рабочей поверхности выше 25°C приводит к падению КПД на 0,5% каждый градус, то у тонких аморфных пленок этого не наблюдается.
  2. Высокий уровень генерации при слабом освещении. В условиях облачности, рассеивания света пылью или газами и при низко стоящем солнце A-Si на 15-20% производительнее, чем, соответственно, Poli-Si и Moni-Si. Они продолжают генерировать энергию даже при сильном дожде, когда выработка моно- и поликристаллов падает практически до нуля.
  3. Незаметность. Особенности строения, малая толщина и отсутствие кристаллической решетки делают солнечные панели из аморфного кремния похожими на полупрозрачную полимерную пленку. Похожими свойствами обладают и перспективные модели других типов тонкопленочных батарей, но последние гораздо менее эффективны.
  4. Отсутствие брака. Процедура изготовления A-Si не требует использования пайки – наиболее «слабого места» традиционных типов фотовольтаики. Несмотря на дешевизну, высокую скорость и простоту производства, бракованные аморфные пленки практически не встречаются.
  5. Слабая реакция на частичное затенение. Еще одна огромная проблема традиционных СЭС, никак не затрагивающая аморфный кремний. Падение тени на любую часть панели A-Si незначительно влияет на ее работоспособность.
Единственным недостатком этой разновидности батарей является пока еще недостаточная удельная мощность. Но вероятность ее выхода на КПД солнечной батареи около 20% уже в следующем поколении очень высока.

Области применения 

Сферы использования панелей из аморфного кремния диктуется их главными достоинствами. Наиболее часто пленки A-Si рекомендуются к применению в следующих случаях:

  • значительной загазованности и/или запыленности воздуха;
  • преобладания неблагоприятных погодных условий, прежде всего частой облачности и осадков;
  • высоких среднегодовых температур окружающей среды;
  • сложности или инженерная нецелесообразность установки панелей в оптимальное положение относительно солнца;
  • при стремлении использовать полупроводниковые элементы в качестве полупрозрачных стекол или пленки – довольно частое дизайнерское решение в современном мире.

Как основной источник энергии батареи из аморфного кремния пока малоэффективны. Однако в качестве альтернативного ее поставщика – особенно в паре с аккумуляторами – их применение встречается все чаще.

Солнечные батареи из аморфного кремния: плюсы и минусы

Похожие статьи

Выбор солнечных батарей. Как избежать ошибок?

Выбор солнечных батарей. Как избежать ошибок?

В солнечной батарее используется фотовольтаический эффект, возникающий в неоднородных полупроводниковых структурах при контакте с солнечным излучением. Неоднородность полупроводникового слоя солнечной батареи достигается легированием одного полупроводникового слоя различными примесями или соединением нескольких слоев полупроводников с различной шириной запрещенной зоны - созданием гетеропереходов. 

Производство солнечных батарей в России. Заводы и технологии

Производство солнечных батарей в России. Заводы и технологии

Долгое время Россия оставалась в стороне от общемирового тренда на развитие альтернативной энергетики. Причиной тому была одна из самых низких в мире цена на электроэнергию и традиционная ориентация на углеводородное топливо. 

Нужен совет?

Если вам сложно определиться с выбором, напишите нам через форму обратной связи

Задать вопрос

Помочь найти?

Если вы не нашли то, что искали, воспользуйтесь поиском по магазину

Акции %

Товары со скидками, ограниченное предложение, успейте купить выгодно!

Смотреть товары