Из чего делают солнечные батареи: особенности строения различных поколений панелей

До недавних пор на вопрос «из чего делают солнечные батареи» существовал всего один ответ – из кремниевых ячеек в жесткой раме с толстым защитным стеклом. Сегодня ситуация кардинально изменилась, хотя панели на основе кремния по-прежнему занимают большую часть мирового рынка. При изготовлении фотовольтаики дома, из подручных материалов, такие ячейки также применяются чаще других. Однако перспективные разработки последних лет создаются на совершенно иных технологиях и значительно отличаются от старых моделей конструктивно.

Краткая история модифицирования: три поколения солнечных батарей

Специалисты разделяют все фотоэлектрические устройства, способные поглощать световые фотоны и преобразовывать их в электрический ток, на три поколения.

  1. Из чего состоят солнечные батареи первого поколения

Конструктивно такие модули состоят из следующих элементов:

  • металлического листа-основы – базового контакта;
  • нижнего присадочного слоя кремниевого полупроводника с преобладанием электронов n-типа – за счет добавления фосфора;
  • верхнего кристаллического слоя, насыщенного электронами р-типа – обычно, путем легирования бором;
  • антиотражающего покрытия – для максимизации поглощения излучения; 
  • тонкого металлизированного контакта сеточного типа с проводом для замыкания сети; 
  • толстого защитного стекла – как правило, сверхпрочного закаленного;
  • обрамляющей рамы.

Толщина монокристаллических Mono-Si или поликристаллических Poli-Si кремниевых пластин в ячейках составляет около 200-300 мкм. Срок службы оценивается в 20-25 лет, с падением производительности в среднем на 0,5% ежегодно. КПД при идеальных условиях освещения достигает 22-24% и резко снижается при высоких температурах либо частичном падении освещенности.

2. Из чего сделаны солнечные батареи второго поколения

Следующее поколение батарей использует тот же физический принцип p/n перехода, однако создано на базе комбинаций редкоземельных элементов (реже – аморфного кремния). Вспомогательные конструкционные элементы панелей в большинстве случаев те же – металлическая основа, антиотражающая пленка и защитное стекло. Однако все чаще появляются и безрамные конструкции, а также тонкопленочные варианты, способные сворачиваться в рулоны и изгибаться под любыми углами.

Наиболее частыми полупроводниками для ячеек таких батарей служат:

  • аморфный кремний a-Si;
  • теллурид кадмия (CdTe);
  • селенид индия/галлия/меди (CIGS).

Иногда на предложение привести примеры, из чего делают солнечные батареи тонкопленочного типа, профильные специалисты приводят и другие, более экзотические варианты. Однако их совокупная доля не превышает 0,1% и используется преимущественно в лабораторных исследованиях.

Название «тонкопленочные» происходит от значительно меньшей толщины рабочих слоев – от 1 до 3 мкм, что почти в 100 раз меньше, чем у кремниевой «классики». КПД при идеальных условиях тонких пленок составляет 16-20%. Однако при рассеянном свете и/или больших углах падения излучения панели CdTe / CIGS могут быть более эффективны.

3. Из чего состоит солнечная батарея третьего поколения

Принцип действия панелей 3-го поколения по-прежнему фотоэлектрический, но конструкция принципиально иная. Полупроводниковые материалы в них, за исключением квантовых точек, не используются вовсе, уступая место органике и полимерам.

Такие батареи часто не имеют ни рамы, ни защитного стекла, печатаются на 3D-принтерах либо изготавливаются методом травления, подобно компьютерным платам.

Главное их достоинство – фантастическая дешевизна производства, широчайшие возможности геометрии и прозрачность. Третье поколение – это панели ближайшего будущего, которые будут повсеместно встраиваться в дома, окна, одежду и даже мельчайшие бытовые предметы.

Основной недостаток на сегодня – низкий КПД, составляющий от 0,1 до 7%.

Полупроводниковые материалы – из чего делают солнечные батареи сегодня

Основными полупроводниковыми материалами, которые используются для производства 99% фотоэлектрических ячеек на современном мировом рынке, являются:

  1. Монокристаллический кремний - Выращивается в виде крупных кристаллов по методу профессора Чохральского. Далее кремниевые цилиндрические «чушки» режутся на очень тонкие диски толщиной 0,2-0,4 мм и подвергаются специализированной химической обработке. Практически готовые ячейки обтачиваются, шлифуются, покрываются защитным покрытием и металлизируются. При желании сделать солнечную батарею своими руками такие фотоэлектрические элементы покупаются в магазине, а остальные детали моноблока изготавливаются самостоятельно из подручных материалов.
  2. Поликристаллический кремний - Производится в металлургических тиглях более дешевым методом направленной кристаллизации (block-cast). После расплава кремниевого сырья его медленно остужают, что приводит к образованию «игольчатых» разнонаправленных кристаллов. В эксплуатации такая поверхность чуть хуже монокристалла при идеальной освещенности, но более эффективна в остальных случаях. По этой причине, устанавливая комплект батарей на крышах, на южные скаты часто монтируют Mono-Si, а на юго-западные и юго-восточные – Poli-Si.
  3. Аморфный кремний – из чего делают солнечные батареи этого типа Основой батарей данного типа служит гидрогенезированный кремний с большим коэффициентом лучевого поглощения. Современные модели комбинируют из нескольких слоев, обогащенных германием и углеродом. Это позволяет устранить главный недостаток панелей a-Si – быструю деградацию ячеек.

Такая модификация носит название уже не аморфного, а микроморфного кремния и показывает КПД до 12%. Низкая эффективность компенсируется дешевизной производства, поскольку на такие ячейки элементов требуется в 200 раз меньше полупроводника чем для Mono-Si или Poli-Si.

4. Из чего сделаны тонкопленочные солнечные батареи CdTe

Теллурид кадмия считается лучшим однопереходным полупроводниковым материалом по совокупности трех показателей – поглощающая способность, надежность, стоимость. CdTe значительно производительнее кремния и намного дешевле более эффективных пленок на базе дорогостоящих германия и индия.

Подложка пленки может быть не металлической, а стеклянной, а сами ячейки – полужесткими или гибкими. CdTe отличается стабильностью, долговечностью, малой чувствительностью к изменению освещения и быстро растущим КПД новых поколений модулей.

5. Особенность строения солнечных панелей типа CIGS

Основой батарей на сульфидах редкоземельных элементов является композитное смешение галлия, индия и меди. Такие панели являются «чемпионами» по КПД и стойкости, но стоят очень дорого.

Коммерческое применение пока ограничено только космосом и авиационной отраслью, поскольку добыча индия и галлия на планете ограничена всего несколькими сотнями тонн в год. Даже если бы все они пошли на изготовление батарей, общая мощность панелей едва достигла бы 10 ГВт.

6. Из чего состоят солнечные батареи типов GaAs и InP

Базовыми редкоземельными элементами этой группы панелей служат арсенид галлия GaAs и фосфид индия InP. Отличительная черта обоих вариантов ячеек – практически полное сохранение КПД при температурах в несколько сотен градусов Цельсия.

Применение их на земле финансово нецелесообразно, но практически все солнечные панели космических спутников, зондов, МКС и телескопов сделаны именно на их основе. Теоретический КПД этой группы, при условии использовании в конструкции дополнительных концентраторов, может достигать 85%. Практические рекорды сегодня колеблются в зоне 35-45%.

7. Из чего делают органические солнечные батареи

Несмотря на низкий КПД (лабораторный рекорд на сегодня – 10,8%, коммерческие прототипы – до 7%) панели на органической основе 3-го поколения сегодня активно исследуются. Для полимеров органического происхождения характерны следующие важные черты:

  • простота и дешевизна создания;
  • отсутствие проблем с утилизацией;
  • неограниченность сфер применения;
  • возможность изготовления в прозрачном виде.

Подобные панели практически невесомы, а при использовании технологии «tandem solar batteries» (тандемное соединение) их можно встраивать в окна и регулировать прозрачность.

8. Из чего состоят солнечные батареи на красителях

Конструктивно в них присутствует тонкая стеклянная подложка и напыляемая токопроводящая «краска». Ее основой является нанокристаллические «катод» и «анод», а также неагрессивный электролит – например, диоксид титана. Удобство использования состоит в возможности получения любых цветовых оттенков и нанесения на любые поверхности сверхтонким слоем.

9. Особенности солнечных батарей с квантовыми точками

Последний перспективный вид батарей ближайшего будущего построен на свойствах физических квантовых точек – микроскопических включений полупроводников в тот или иной материал. Геометрически такие «точки» имеют размер в несколько нанометров и распределяются в материале так, чтобы охватить поглощение излучения всего солнечного спектра – ИК, видимого света и УФ.

Огромным преимуществом подобных панелей является возможность работать даже ночью, генерируя около 40% максимальной дневной мощности.

Физико-технические характеристики, сертификация и маркировка

Независимо от того, из чего сделаны солнечные батареи, каждая из них обладает рядом следующих важных характеристик: 

  • механические – геометрические параметры, общая масса, тип рамы, защитного стекла, количество ячеек, вид и ширина коннекторов;
  • электрические или вольтамперные – мощность, напряжение холостого хода, сила тока при максимальной нагрузке, эффективность панели в целом и отдельных ячеек в частности;
  • температурные – изменение КПД при повышении температуры на определенную единицу величины (обычно – 1 градус);
  • качественные – срок службы, скорость деградации ячеек, присутствие в рейтинговых списках Bloomberg;
  • функциональные – необходимость и удобство ухода, простота монтажа/демонтажа.

Промышленные солнечные панели, из каких бы материалов они не были сделаны, обязательно должны быть сертифицированы. Минимальными требованиями являются сертификаты качества ISO, СE, TUV (международные) и/или Таможенного союза (при продаже в его пределах).

Обязательной является и международные правила маркировки. Например, аббревиатура CHN-350M-72 содержит следующие сведения:

  • CHN – идентификатор компании-изготовителя (в данном случае – китайской СhinaLand);
  • 350 – мощность панели в ваттах;
  • M – обозначение монокристаллического кремния; 
  • 72 – число фотоэлектрических ячеек в модуле.

Из чего можно сделать солнечные батареи своими руками дома

Для этого необходимо следующее:

  1. Предварительно начерченная схема и проведенные расчеты.
  2. Определенное количество солнечных ячеек заводского изготовления – купить их дешевле всего в сети, например, на сайте Aliexpress или в других сетевых магазинах. Обращайте внимание на то, чтобы все элементы имели одинаковые электрические характеристики.
  3. Самодельный каркас из бруса и фанеры – правила его сборки можно посмотреть на многочисленных видео в сети.
  4. Оргстекло или плексиглас для поверхностного защитного покрытия.
  5. Краска и термостойкий клей для обработки деревянных поверхностей.
  6. Контактные полосы и провода для соединения ячеек. Схемы различные способов соединения также можно изучить в интернете.
  7. Паяльник и припой. Паяльные работы следует проводить очень внимательно, чтобы не испортить будущее изделие.
  8. Силиконовый клей и саморезы для закрепления сборной батареи в каркасе.

Небольшая батарея потребует около 30-50 долларов вложений, в то время как заводской вариант аналогичной мощности обойдется всего на 10-20% дороже. Разумеется, подобная самодельная конструкция не прослужит 25 лет, не будет обладать мощностью полноценной солнечной электростанции и не сможет похвастаться значительным КПД. Однако стоимость ее будет минимальной настолько, насколько это возможно.

Из чего делают солнечные батареи: особенности строения различных поколений панелей

Похожие статьи

Выбор солнечных батарей. Как избежать ошибок?

Выбор солнечных батарей. Как избежать ошибок?

В солнечной батарее используется фотовольтаический эффект, возникающий в неоднородных полупроводниковых структурах при контакте с солнечным излучением. Неоднородность полупроводникового слоя солнечной батареи достигается легированием одного полупроводникового слоя различными примесями или соединением нескольких слоев полупроводников с различной шириной запрещенной зоны - созданием гетеропереходов. 

Новые технологии в производстве солнечных батарей. Будущее уже тут.

Новые технологии в производстве солнечных батарей. Будущее уже тут.

Применяя инновационные решения, в производстве солнечных модулей, постоянно происходят различные улучшения эффективности, уменьшения влияния затенения и повышения надежности, при этом несколько производителей в настоящее время дают гарантию производительности до 30 лет. Учитывая все новые доступные варианты выбора, стоит провести некоторые исследования, прежде чем инвестировать в солнечную установку. В нашей полной обзорной статье о солнечных панелях мы расскажем, как выбрать надежную солнечную панель и на что обратить внимание.

Нужен совет?

Если вам сложно определиться с выбором, напишите нам через форму обратной связи

Задать вопрос

Помочь найти?

Если вы не нашли то, что искали, воспользуйтесь поиском по магазину

Акции %

Товары со скидками, ограниченное предложение, успейте купить выгодно!

Смотреть товары